
Observed Vegetation–Climate Feedbacks in the United States*

M. NOTARO AND Z. LIU

Center for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

J. W. WILLIAMS

Department of Geography, University of Wisconsin—Madison, Madison, Wisconsin

(Manuscript submitted 4 February 2005, in final form 3 August 2005)

ABSTRACT

Observed vegetation feedbacks on temperature and precipitation are assessed across the United States
using satellite-based fraction of photosynthetically active radiation (FPAR) and monthly climate data for
the period of 1982–2000. This study represents the first attempt to spatially quantify the observed local
impact of vegetation on temperature and precipitation over the United States for all months and by season.
Lead–lag correlations and feedback parameters are computed to determine the regions where vegetation
substantially impacts the atmosphere and to quantify this forcing. Temperature imposes a significant in-
stantaneous forcing on FPAR, while precipitation’s impact on FPAR is greatest at one-month lead, par-
ticularly across the prairie. An increase in vegetation raises the surface air temperature by absorbing
additional radiation and, in some cases, masking the high albedo of snow cover. Vegetation generally
exhibits a positive forcing on temperature, strongest in spring and particularly across the northern states.
The local impact of FPAR on precipitation appears to be spatially inhomogeneous and relatively weak,
potentially due to the atmospheric transport of transpired water. The computed feedback parameters can
be used to evaluate vegetation–climate interactions simulated by models with dynamic vegetation.

1. Introduction

Vegetation and climate interact through a series of
complex feedbacks, which are not yet fully understood.
Patterns of natural vegetation are largely determined
by temperature, precipitation, solar irradiance, soil con-
ditions, and CO2 concentration (Budyko 1974; Wood-
ward 1987; Woodward et al. 2004). Vegetation impacts
climate directly through moisture, energy, and momen-
tum exchanges with the atmosphere and indirectly
through biogeochemical processes that alter atmo-
spheric CO2 concentration (Pielke et al. 1998; Bonan
2002). The key vegetation–climate feedbacks are out-
lined in Fig. 1.

Plants regulate evapotranspiration by adjusting the

size of their stomatal openings (Shukla and Mintz 1982;
Jones 1983; Henderson-Sellers et al. 1995; Pollard and
Thompson 1995; Bonan 2002). Through this moisture
feedback, an increase in evapotranspiration potentially
leads to an increase in atmospheric column moisture
and precipitation, further enhancing plant growth.
Changes in vegetation alter the surface albedo and ra-
diation fluxes, leading to a local temperature change
and eventually a vegetation response. This albedo (en-
ergy) feedback is particularly important when forests
mask snow cover and grass spreads into desert (Rob-
inson and Kukla 1985; Bonan et al. 1992; Betts and Ball
1997; Bonan 2002). Through the momentum feedback,
variations in the surface roughness of vegetation alter
wind speeds, moisture convergence, turbulence, and
the depth of the atmospheric boundary layer, which
then affect vegetation growth (Sud et al. 1988; Buer-
mann 2002).

Most of the current understanding of these feedbacks
resulted from studies using coupled vegetation–climate
models. Foley et al. (1998) found that the northward
expansion of grasslands in an interactive vegetation
simulation of the Global Environmental and Ecological
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Simulation of Interactive Systems–Integrated Bio-
sphere Simulator (GENESIS–IBIS) led to cooling over
the southern Sahara and Arabian deserts. Using the
Community Climate System Model (CCSM2) with dy-
namic vegetation, Levis et al. (2004) concluded that soil
feedbacks, linked to surface albedo changes, contrib-
uted to the northward advance of the North African
monsoon during the mid-Holocene. Using the Fast
Ocean Atmosphere Model–Lund Potsdam Jena
(FOAM-LPJ) Gallimore et al. (2005) simulated a pole-
ward expansion of boreal forest cover and an increase
in midlatitude grasslands during the mid-Holocene,
compared to simulated vegetation under modern or-
bital forcings. The expanded boreal forest, by masking
snow cover, led to springtime warming through the
albedo feedback. Notaro et al. (2005) simulated the
impact of changes in CO2 levels during the preindus-
trial to modern period, and likewise found a poleward
shift of the boreal forest using FOAM-LPJ. Also, car-
bon dioxide fertilization produced a global greening
trend and enhanced warming over Eurasia and North
America.

Few studies have primarily applied observational
data to determine the impact of vegetation feedbacks
on the large-scale climate. Several studies determined
that springtime leaf emergence initiates discontinuities
in numerous meteorological variables (Schwartz and
Karl 1990; Schwartz 1992, 1996; Fitzjarrald et al. 2001),
while McPherson et al. (2004) showed that Oklahoma’s
winter wheat belt induces feedbacks on local tempera-
ture and moisture.

Using a satellite-based normalized difference vegeta-
tion index (NDVI) and gridded temperature data,
Kaufmann et al. (2003) applied Granger causality sta-
tistics (Granger 1969) to quantify the effects of inter-
annual variations in vegetation on temperature over
North American and Eurasian forests. They found that
increased NDVI over North America resulted in warm-
ing during winter and spring and cooling during sum-
mer and autumn. The impact on temperature was
strongest during winter, when NDVI was negatively
correlated with snow extent and weakly correlated with
vegetation.

W. Wang et al. (2005, personal communication, here-

FIG. 1. Schematic of feedbacks between climate and vegetation on seasonal to interannual time scales.
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after W05) applied Granger causality to study intrasea-
sonal interactions between NH vegetation and climate
during the growing season. They identified significant
causal relationships of vegetation on temperature and
precipitation over the central North American grass-
lands, with enhanced vegetation leading to higher tem-
peratures and reduced precipitation. This finding is not
consistent with most modeling studies, which simulate
an increase in precipitation resulting from an increase
in vegetation.

Liu et al. (2006) estimated the magnitude of observed
global vegetation feedbacks on temperature and pre-
cipitation. They used lead–lag correlations and a statis-
tical feedback parameter (Frankignoul and Hassel-
mann 1977; Frankignoul et al. 1998) to relate the satel-
lite-based fraction of photosynthetically active
radiation (FPAR) to gridded temperature and precipi-
tation data. They showed that, in the northern mid and
high latitudes, vegetation variability is predominantly
driven by temperature, while vegetation also exerts a
strong positive feedback on temperature. They found
that, while tropical and subtropical vegetation is mostly
driven by precipitation, the influence of vegetation on
precipitation is weak globally, with no evidence of a
dominant positive vegetation–precipitation feedback.

Liu et al. (2006) used a statistical technique previ-
ously applied to ocean–atmosphere feedbacks to assess
vegetation–climate feedbacks, thereby providing a
global overview of vegetation impacts with limited at-
tention given to underlying processes. This study ap-
plies the same statistical approach in a focused analysis
of vegetation–climate feedbacks in the United States.
In addition to presenting an overview of the mean and
seasonality of vegetation in the United States and as-
sessing the controls of vegetation growth, the magni-
tude of seasonal vegetation forcing on temperature and
precipitation is quantified from observational data. The
results can be applied to evaluate vegetation feedbacks
in the United States as simulated by climate models.

The key difference between studies using a feedback
parameter (present study; Liu et al. 2006) and those
using Granger causality (Kaufmann et al. 2003; W05) is
that the former is a feedback study that quantifies the
instantaneous vegetation forcing on the atmosphere,
while the latter is a predictability study of the causality
between vegetation and the atmosphere at a later time.
The present study and that of Liu et al. (2006) are the
first to quantify the observed instantaneous forcing
from vegetation. This instantaneous forcing (from feed-
back) will be greater than the lagged causality forcing
(from predictability) with the difference representing
the one-month FPAR autocorrelation (shown by Liu et
al. 2006).

The data is outlined in section 2 and the methodology
in section 3. Section 4 describes the mean, variance, and
persistence of U.S. land cover and FPAR. Instanta-
neous and lead/lag correlations between FPAR and
temperature/precipitation are the focus of section 5.
Computed feedback parameters are presented in sec-
tion 6. The conclusions are in section 7.

2. Data

Vegetation is assessed using the Pathfinder Version 3
Advanced Very High Resolution Radiometer (AVHRR)
FPAR data (Myneni et al. 1997) on a 0.5° � 0.5° grid.
FPAR is the fraction of photosynthetically active radia-
tion absorbed by the green parts of vegetation and rep-
resents a measure of vegetation activity. FPAR is de-
rived from satellite-measured NDVI through a linear
relationship (Myneni et al. 1997); FPAR can be directly
computed from the model output, making it easier to
use than NDVI to later assess model feedbacks. All
data is obtained for 1982–2000. When computing cor-
relations and feedback parameters, the data is interpo-
lated to a 2.5° � 2.5° grid, converted to monthly anoma-
lies by removing the annual cycle, and linearly de-
trended.

Satellite-derived vegetation data contains certain
known biases. Wintertime FPAR of high latitude for-
ests is likely biased too low owing to the high albedo of
snow cover and limited available sunlight for vegetation
use or detection by remote sensing (Los et al. 2000;
Buermann 2002; Tian et al. 2004). Pathfinder NDVI
data is corrected for Rayleigh scattering (Gordon et al.
1988), ozone absorption, and instrument degradation,
but not for aerosols or viewing geometry. Kaufmann et
al. (2000) found that the data was not contaminated by
trends associated with changes in solar zenith angle re-
lated to changing satellites or orbital decay. Huete
(1988) and Kaufmann et al. (2000) determined that
NDVI is sensitive to soil characteristics over partially
vegetation regions. The vegetation feedback param-
eters in section 6 could include some signature of soil
characteristics or snow cover. Model simulations can
serve to further isolate actual vegetation feedbacks.

The sources of 2.5° � 2.5° monthly climate data are
the National Centers for Environmental Prediction–
National Center for Atmospheric Research (NCEP–
NCAR) reanalysis (Kalnay et al. 1996) for surface air
temperature and Climate Prediction Center (CPC)
Merged Analysis of Precipitation Dataset (Xie and Ar-
kin 1997). FPAR, temperature, and precipitation data
are used throughout sections 4–6. Mean tree cover frac-
tion (total, deciduous, and evergreen) and grass, crop,
and shrub cover fraction are retrieved from the Global
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Continuous Fields of Vegetation Cover Dataset (De-
Fries et al. 1999, 2000). Crop cover fraction is obtained
from Ramankutty and Foley’s (1998) cropland dataset.
The AVHRR-based biome distribution is retrieved
from the Earth Resources Observation and Science
(EROS) Data Center’s Global Land Cover Classifica-
tions dataset (Loveland et al. 2001), which applies the
International Geosphere–Biosphere Discover (IGBD)
land cover legend (Loveland and Belward 1997). The
forest cover fraction, crop cover fraction, and biome
distribution datasets are applied in section 4.

3. Methods

Section 4b presents mean FPAR and computes the
magnitude of FPAR’s seasonal cycle and year-to-year
variability using standard deviations. Unrotated (EOF)
and rotated (REOF) empirical orthogonal functions
are calculated using June–August (JJA) FPAR to in-
vestigate interannual variability. In section 4c, autocor-
relation functions and decorrelation times are com-
puted for FPAR, temperature, and precipitation
anomalies. Decorrelation time represents memory or
persistence and is computed by the following equation
(von Storch and Zwiers 1999):

Td �
1 � �1

1 � �1
, �1�

where �1 is the one-month autocorrelation.
Instantaneous and lead–lag correlations between

FPAR and both temperature and precipitation are pre-
sented in sections 5a–c, using both data from all months
and by season. The lead–lag correlations are extended
in section 5d to regional analyses of Wisconsin and the
central/northern Rockies, where significant correla-
tions are identified with FPAR leading the atmosphere.
Finally, feedback parameters are presented in section 6
as a measure of instantaneous forcing from FPAR.

The methodology of computing the feedback param-
eter for vegetation forcing on the atmosphere is out-
lined by Liu et al. (2006). It was initially proposed by
Frankignoul and Hasselmann (1977) and later applied
to study SST feedback on air–sea heat flux (Franki-
gnoul et al. 1998; Frankignoul and Kestenare 2002) and
the atmosphere’s response to extratropical Atlantic
(Czaja and Frankignoul 2002) and Pacific (Liu and Wu
2004; Lee and Liu 2005, manuscript submitted to Cli-
mate Dyn.) SSTs. As with SST, FPAR exhibits a longer
memory than the atmosphere. In the present study, the
impact of changes in monthly FPAR on temperature
and precipitation are assessed over the United States.
While feedback represents a two-way interaction, this

study primarily focuses on the component of feedback
with the vegetation forcing the atmosphere.

As shown by Liu et al. (2006), atmospheric variables
such as temperature or precipitation can be divided into
two components:

A�t � dta� � �AV�t� � N�t � dta�. �2�

Here A(t) is the atmospheric variable at time t, V(t) is
FPAR at time t, �A is the feedback parameter, dta is the
atmospheric response time (about one week), and N(t)
is the climate noise generated internally by atmospheric
processes that are independent of FPAR variability.
The atmospheric variable is determined by �AV(t),
which is its feedback response to changes in FPAR, and
N(t � dta), which is atmospheric noise. As derived by
Liu et al. (2006) and Frankignoul et al. (1998), the feed-
back parameter can be determined as

�A �
covar	A�t�, V�t � ��


covar	V�t�, V�t � ��

, �3�

where � is the time lag, which is longer than the persis-
tence time of atmospheric internal variability. The
feedback parameter is estimated as the ratio of the
lagged covariance (covar) between A and V to the
lagged covariance of V. Following Frankignoul et al.
(1998), the feedback parameter is computed as the
weighted average from the first three lags (weights of
1.0, 0.5, and 0.25 for lags of 1, 2, and 3 months, respec-
tively).

The feedback parameter quantifies the instantaneous
feedback response of the atmosphere to changes in
FPAR based on monthly data. For surface air tempera-
ture, �T is given in units of °C (0.1 FPAR)�1, repre-
senting the change in observed temperature due to an
increase in monthly FPAR by 0.1. For precipitation, �P

is given in units of cm month�1 (0.1 FPAR)�1. Positive
values of � indicate a positive forcing of FPAR on the
atmospheric variable. To estimate the statistical signifi-
cance of the feedback parameters, a Monte Carlo boot-
strap approach is applied in which 1000 individual � are
computed at each grid point from shuffled series (Czaja
and Frankignoul 2002). The significance is determined
by the percentage of these � that are smaller in magni-
tude than the actual computed feedback parameter for
that grid cell.

Kaufmann et al. (2003) noted that conventional
lagged correlations are insufficient to determine causal-
ity within the fully coupled earth system owing to issues
of persistence. Kaufmann et al. (2003) and W05 applied
Granger causality statistics in order to better isolate
cause and effect in the coupled climate–vegetation sys-
tem. Granger causality incorporates lagged cross-
correlations and autocorrelations, thereby attempting
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to extract causality without false signals from persis-
tence. However, this methodology is new to climate
studies (Kaufmann and Stern 1997) and has received
some criticism regarding the interpretation of its results
for a multivariate system (Triacca 2001). The feedback
parameter in the present study also considers both
lagged cross-correlations and autocorrelations, provid-
ing a higher order statistical analysis to supplement the
basic correlations in section 5. Nonetheless, without us-
ing a climate model, it is difficult using pure statistical
methods to extract causality within a fully coupled
earth system due to numerous feedbacks and persis-
tence. The present study offers a statistical approach to
quantify observed vegetation forcing on the atmo-
sphere but does not attempt to explain all the mecha-
nisms involved.

4. U.S. land cover and FPAR

a. Land cover dataset description

Figure 2 presents the percent coverage of deciduous
trees, evergreen trees, grass/herb/shrubs, and crops
across the United States, while the IGBD biome distri-
bution is shown in Fig. 3. Total tree cover is limited to
35% of the United States. Evergreen forests cover 21%
of the country, including the coastal plain evergreens of
the Southeast, Pacific Coast evergreens of the North-
west, and boreal forest extending into Minnesota,
Michigan, and New England. Deciduous forests extend
across 14% of the United States, predominantly in the
Mid-Atlantic, Northeast, and Midwest states.

The majority of the country, 52%, is covered by
grassland, shrubland, and cropland. The mountainous
land between 120° and 105°W is predominantly shrub-
land and grassland. The Great Plains prairie, which
today is largely cropland and pastureland, lies from
the eastern slope of the Rockies to about 94°W, the
western edge of the eastern U.S. mixed forest. The
Corn Belt, with mostly maize and soybean, stretches
from the Dakotas to Ohio. Substantial amounts of
spring (winter) wheat are grown in the Dakotas
and Montana (Kansas, Colorado, Oklahoma, and
Texas).

b. Mean, seasonality, and interannual variability of
FPAR and climate variables

Mean FPAR is greatest over the deciduous and ev-
ergreen forests of the East and the Pacific Northwest
evergreen forests (Fig. 4). While evergreen forests
maintain the highest wintertime FPAR values (0.5–0.7),
the thick leaf cover of deciduous forests in the eastern
United States leads to higher summertime FPAR val-
ues (0.7–0.9). Year-round warm, wet conditions in the
Southeast and wet, relatively mild winter conditions in
the Pacific Northwest help maintain evergreen forests.
A strong southerly low-level jet advects warm, moist
Gulf air across the central U.S. prairie during summer.
The eastern edge of this prairie represents a climatic
boundary where precipitation exceeds evaporation to
the east and vice versa to the west. Across the north
United States, limited growing degree-days and sun-

FIG. 2. Percent coverage of (a) deciduous trees, (b) evergreen trees, (c) crops, and (d) grasses/crops/shrubs. The data source for (a),
(b), and (d) is the Global Continuous Fields of Vegetation Cover Dataset (DeFries et al. 1999, 2000) and for (c) Ramankutty and
Foley’s (1998) cropland dataset.
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light contribute to low wintertime FPAR values (except
the Pacific Northwest). The southern extent of the
North American boreal forest follows the mean winter
position of the Arctic front (Bryson 1966). Poleward of
36°N, FPAR peaks during summer at most locations
within the United States. In the Southeast and the
Southwest monsoon region, FPAR typically peaks in
autumn, although its seasonal cycle is quite weak. Iso-
lated areas of the southern prairie and southern Cali-
fornia achieve maximum FPAR in spring.

FPAR, temperature, and precipitation are averaged
over each season and the interannual variability for
each season is shown in Fig. 5. Two centers of high
interannual variance in FPAR are identified over the
northern (Dakotas/Montana) and southern (Texas)
Great Plains, connected by a saddle of high variance
across the plains, while interannual variability is mini-
mal to the east of 95°W and across the Southwest. The
interannual standard deviation of FPAR reaches 0.06 at
both centers in summer, although the northern center is
more distinct in winter and corresponds to the location
of largest temperature variance (Fig. 5). Grasslands and
shrublands support substantial year-to-year summer-
time FPAR variance, while agricultural regions of the

eastern Dakotas/Minnesota and eastern Texas exhibit
less variance. Previous studies have noted large inter-
annual variability in aboveground net primary produc-
tivity (Knapp and Smith 2001) and fractional vegetation
cover (Myneni et al. 1998; Zeng et al. 2003) of grass-
lands. The Pacific Coast evergreen forests exhibit large
year-to-year FPAR variance, mostly between winters,
due to large precipitation variance.

Across the northern United States, FPAR exhibits a
strong seasonal cycle (Fig. 6b) associated with a distinct
temperature seasonal cycle. The standard deviation of
the climatological monthly mean FPAR, representing
its seasonal cycle, exceeds 0.3 over North Dakota and
Minnesota where temperature variance is particularly
large in winter and spring (Fig. 6b). The standard de-
viation of monthly FPAR anomalies (after removing
the seasonal cycle) is mostly less than 0.1 and peaks in
the northern prairie and the Northeast, due to tempera-
ture variance and in the Northwest and southern prai-
rie, due to precipitation variance (Fig. 6c). It is substan-
tial in comparison to the amplitude of FPAR’s seasonal
cycle over the southern prairie, Southeast coastal plain
evergreens, and Pacific Coast evergreens (Fig. 6d). In
these coastal areas, there is large year-to-year variance

FIG. 3. Biome distribution from EROS Data Center’s Global Land Cover Classifications dataset (Loveland et al. 2001), which was
derived from AVHRR data for 1992–93 and applies the IGBD land cover legend (Loveland and Belward 1997). Classifications are
merged into seven categories for simplification. Boxes indicate the eight regions in Table 1.
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